Test 2 Review Chaptes 16, 17, 18, 20, 21, 22, 23

Robb T. Koether

Hampden-Sydney College

Wed, Apr 13, 2016

- Two Types of Parameters
- Means
 - One Sample
 - Two Samples
- Porportions
 - One Sample
 - Two Samples

- Two Types of Parameters
- 2 Means
 - One Sample
 - Two Samples
- Porportions
 - One Sample
 - Two Samples

Two Types of Parameters

- We had two types of parameter: means and proportions.
- Means are averages, derived from numerical data.
- Proportions are ratios, derived from categorical data.
- The population mean is μ and the sample mean is \overline{x} .
- The population proportion is p and the sample proportion is \hat{p} .

- Two Types of Parameters
- Means
 - One Sample
 - Two Samples
- - One Sample

- Two Types of Parameters
- 2 Means
 - One Sample
 - Two Samples
- Porportions
 - One Sample
 - Two Samples

Means – One Sample, σ Known

- The sampling distribution of \overline{x} is normal, with mean μ and standard deviation σ/\sqrt{n} .
- Thus, a confidence interval for μ is

$$\overline{x} \pm z^* \left(\frac{\sigma}{\sqrt{n}} \right)$$
.

$$z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}.$$

Means – One Sample, σ Unknown

- If σ is unknown, then we use s as an estimator of σ and use t instead of z.
- ullet Thus, a confidence interval for μ is

$$\overline{x} \pm t^* \left(\frac{s}{\sqrt{n}} \right)$$
.

For hypothesis testing, the test statistic is

$$t = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}.$$

• Degrees of freedom = n-1.

- Two Types of Parameters
- Means
 - One Sample
 - Two Samples
- 3 Porportions
 - One Sample
 - Two Samples

Means – Two Samples, σ_1, σ_2 Known

• The sampling distribution of $\overline{x}_1 - \overline{x}_2$ is normal, with mean $\mu_1 - \mu_2$ and standard deviation

$$\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}.$$

• Thus, a confidence interval for $\mu_1 - \mu_2$ is

$$(\overline{x}_1-\overline{x}_2)\pm z^*\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}}.$$

$$Z = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}.$$

Means – Two Samples, σ_1, σ_2 Unknown

- If σ_1 and σ_2 are unknown, which is usually the case, then we use s_1 and s_2 as estimators of σ_1 and σ_2 and use t instead of z.
- ullet Thus, a confidence interval for μ is

$$(\overline{x}_1 - \overline{x}_2) \pm t^* \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}.$$

• For hypothesis testing, the test statistic is

$$t = \frac{\overline{X}_1 - \overline{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}.$$

• Degrees of freedom = $(n_1 - 1) + (n_2 - 1)$.

- Two Types of Parameters
- 2 Means
 - One Sample
 - Two Samples
- Porportions
 - One Sample
 - Two Samples

- Two Types of Parameters
- - One Sample
 - Two Samples
- **Porportions**
 - One Sample

Porportions - One Sample

- The sampling distribution of \hat{p} is normal, with mean p and standard deviation $\sqrt{\frac{p(1-p)}{p}}$.
- Thus, a confidence interval for *p* is

$$\hat{p} \pm z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}.$$

$$z=\frac{\hat{p}-p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}.$$

- Two Types of Parameters
- Means
 - One Sample
 - Two Samples
- Porportions
 - One Sample
 - Two Samples

Porportions - Two Samples

• The sampling distribution of $\hat{p}_1 - \hat{p}_2$ is normal, with mean $p_1 - p_2$ and standard deviation

$$\sqrt{\frac{p_1(1-p_1)}{n_1}+\frac{p_2(1-p_2)}{n_2}}.$$

• Thus, a confidence interval for $p_1 - p_2$ is

$$(\hat{p}_1 - \hat{p}_2) \pm z^* \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}.$$

$$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}},$$

where
$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$
.

